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Consideration is given to the possibility of overstability in the Couette flow of 
viscous and elastico-viscous liquids. The relevant linear perturbation equations 
are solved numerically using an initial-value technique. It is shown that over- 
stability is not possible in the case of Newtonian liquids for the cases considered. 
In  contrast, overstability is to be expected in the case of moderately-elastic 
Maxwell liquids. The Taylor number associated with the overstable mode 
decreases steadily as the amount of elasticity in the liquid increases, and it is 
concluded that highly elastic Maxwell liquids can be very unstable indeed. 

Introduction 
In  the first two papers under the same title (Thomas & Walters 1964a,b) 

i t  was shown that the presence of elasticity in an elastico-viscous liquid (and in 
particular the ‘Maxwell ’ liquid) can be a significant destabilizing agent. Evidence 
was also given which suggested that the principle of exchange of stabilities does 
not hold for highly elastic liquids. In  the present paper, this latter problem is 
considered in some detail for a Maxwell liquid. It is shown that overstability 
sets in much earlier (i.e. at  a lower value of an elastic parameter k) than one 
would have concluded from the earlier work. In fact, over quite a wide range 
of the elastic parameter, two modes of instability are possible-the xsual 
‘stationary’ stability mode and an ‘overstable’ mode with a lower Taylor 
number. 

The problem of overstability in the Couette flow of Newtonian fluids has often 
been posed (see, for example, Chandrasekhar 1961)) but so far as the authors are 
aware, no complete solution has appeared in the literature. This particular 
problem is a special case of the one discussed in the present paper, and is con- 
sidered in the discussion of the results in Q 4. 
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2. The basic equations 
The particular elastico-viscous liquid considered in the earlier papers was that 

designated liquid B‘ by Walters (1964) with equations of state? 

where p ,  is the stress tensor, p an arbitrary isotropic pressure, g,, the metric 
tensor of a fixed co-ordinate system xi, e$? the rate-of-strain tensor, and 

In these equations, N(7)  is the distribution function of relaxation times 7 (Walters 
1960) and x ’ ~ (  = x’$(x, t ,  t’)) is the position at time t’ of the element that is instan- 
taneously a t  the point xi at time t .  The Newtonian liquid of constant viscosity vo 
is a special case of liquid B‘, obtained by writing$ 

N(7)  = v o w  (4) 
in equations (2) and (3). 

In  the present problem, we shall consider the xi  co-ordinate system to be a 
cylindrical polar system ( r ,  8, z) ,  the axis of the cylinders being along the z axis 
and the inner and outer cylinders having radii rl and r2, respectively. We shall 
further assume that the inner and outer cylinders rotate about their common 
axis with angular velocities Ql and Q2, respectively. 

The ‘steady-state ’ velocity distribution is given by (Thomas & Walters 1964a) 

W(r) = 0, V(0) = Vk), Wh) = 07 ( 5 )  

where V = Cr + D / r ,  ( 6 )  

and (7) 

qr), q,), wb) being the physical components of the velocity vector. 

by (5)-( 7)  is disturbed slightly, assuming a velocity distribution of the form 0 
We shall consider the behaviour of liquid B‘ when the steady state described 

q,.) = u eiul, qO) = V + w eiut, vb) = w eiut, (8) 

t Covariant suffices are written below, contravariant suffices above, and the usual 

$ 6 denotes a Dirnc delta-function, defined in such a way that 
summation convention for repeated suffices is assumed. 

3 In  equation (8) and in subsequent equations, the real part is to be understood. 
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where u, v and w are complex functions of r and z, whose powers higher than 
the first can be neg1ected.t In parts 1 and 2, consideration was confined to the 
case of neutral stability. It was also assumed that the principle of exchange of 
stabilities was valid, so that a could be set equal to zero inequation (8). In 
the present paper, only neutral stability is assumed, which restricts g to be 
real. 

In  order to determine the stress components corresponding to the velocity 
distribution (8), it  is necessary to determine the displacement functions di, 
which we shall write as r’, 0’, z’. These are given by (cf. Oldroyd 1950, equation 
(21)) 

ar’ ar’ qS, iir’ ar’ 
r aO a2 

- at +v( r )z+- -+vb) -  = 0, 

Solving these equations for r’, 8’, z’, we obtain 

In order to obtain the rate-of-strain components e(l)mr(x’, t ‘) that appear in the 
equations of state (Z) ,  we first write down the rate-of-strain components for the 
element at  ( r ,  0, z )  at time t ;  we then replace r ,  0, z, t by r ’ ,  0‘, z‘, t’ and use equa- 
tions (10). In this way, we obtain 

Shield & Green (1963) have recently critized linear stability analyses. However, we feel 
that a linear analysis is justified in the problem under consideration (cf. Chandrasekhar 
1961 ; Taylor 1923). 
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Equations (10) and (1 1) can now be used to determine the physical components 
of the partial-stress tensor. After much reduction, and use of (5)-(7), we obtain 

It is convenient at this stage to make the usual assumption that the annular 
gap between the cylinders is small compared with the radii of the cylinders (cf. 
Taylor 1923; Chandrasekhar 1954; Thomas & Walters 1964a, b) .  Substituting 
r = rl + dx, where d = r2 - r,, and assuming that dlr is small, we have 

C + 0 / r 2  = Ql( 1 +ax), C + rl aQl/2d, D + - r! aQl/2d,  

where a = ( Q2/Stl) - 1. On making this approximation in the equations obtained 
by substituting the stress distribution (12) into the stress equations of motion, 
we obtain 

1 ap* 1 a2u aZu 1 2 ~  a2 
iapu-2vSt1p(l+ax) = ---+p --f- ----O-Q;u 

d ax o[d2ax2 a x z ]  ia d2 

where p* eiut is the additional pressure due to the disturbance. The associated 
equation of continuity is 

i a u  aw --+- = 0. 
dax a x  



v = ET, .Rl vl(x) sin hz ,  

w = Rr, .R,(dX/dx) cos Ax, 

T = - 2ar, R2/d, 5 = d2pc/qo, Po = po/r]o, K~ = Ko/pd2 ,  

p* = qor, 0,(eR/d)p1(x)sinhx, R = d2Qlp/qo ,  e = Ad, 
- 

- 

- i i ~ ~ , + + V ' v  1 --TE' X- k 
1 + W k  O -  [ (1 + i5k)z 

> (18) 
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Equations (27 )  and ( 2 8 )  subject to (24 )  determine a characteristic-value 
problem for the Taylor number T as a function of the wave-number E , T ,  u and k. 
When 5 = 0,  these equations reduce to those given by Thomas & Walters 
(1964a,b)  for the case of 'stationary' stability. In  their work, Thomas and 
Walters found that for sufficiently large k, no real values of T exist for any value 
of E .  In  the present paper, it  is shown that it is possible to choose a non-zero 5 for 
which the Taylor number is real. 

When k = 0,  equations (27 )  and (28 )  subject to (24 )  are those governing 
'overstability ' in Newtonian fluids. 

3. The solution of the equations 
The solution of the characteristic-value problem presented by equations (24) ,  

(27 )  and (28 )  has been obtained numerically using an initial-value technique. 
We first multiply equations (27 )  and (28 )  by 1 + i 5k  and separate the resulting 
equations into their real and imaginary parts. Writing 

x = X R  + i x z ,  210 = V R  + ivr, T = TR + iTz, (29 )  
we obtain 

- 
-g(V:XZ+FkV:XR)+(1 +ax) (VR-skvZ) 
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The appropriate boundary conditions are 

xR = dxRfdx = V ,  = xI = dXr/dz = vr = 0 on x = 0 and x = 1. (34) 

Since equations (27) and (28) are linear and homogeneous and the boundary 
conditions (24) are homogeneous, there is an arbitrary amplitude in the solution. 
To remove this, we impose the further condition 

d2Xldx2 = 1 + i  at x = 0, 

This normalizing procedure ensures that derivatives of x and vo at the origin are 
uniquely defined for any given characteristic value of T.  For convenience, we 

i.e. d2XR/dX2 = 1, d2XI/dX2 = 1 at X = 0. (35) 

write 

and as a first approximation to one characteristic solution we choose 

6 = 6(1), < = g(l), p = p(Q, y = yW, TR = Tg), TI = T f ) .  (37) 
An initial-value problem is now defined by equations (30)-(33) with boundary 

conditions 

4 
X I  = dXI/dX = 0, d 2 X I l d X 2  = 1, d3XI /dX3 = p, V I  = 0, dv,/dx = y(1), J 
xR = dXR/dx  = 0, d2XR/dx2 = 1, d3xR/dx3 = c('), V R  = 0, dvR/dx = p(1) 

(38) 

a t  x = 0. We integrate this system of equations numerically using a standard 
Runge-Kutta process as far as x 5 1. The numerical solution so generated will be 
a function of 6,  c, p, y ,  TR and TI, which we regard as continuous variables. 

We require to satisfy conditions (34) at x = 1. It is therefore necessary to 
determine what changes are produced at  x = 1 in xR, dxR/dx, vR, x I ,  dxr/dx and 
vI by small changes St, Sg, Sp, Sy, STR and STI in (, 5, /3, y ,  T, and TI, respectively. 
The necessary first-order corrections to the assumed values of 5, g, p, y ,  TR and TI 
are obtained using Newton's Rule. Thus, if the required characteristic values are 
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in which all functions are evaluated at  x = P with 6 = c(I), 5 = C(l), p = /?(l), y = y(l), 
T, = T@ and TI = TY). We obtain differential equations for the functions i?xRlac 
etc. by differentiating (30)-(33) with respect to [, 5, p, y ,  T, and TI in turn. The 
appropriate boundary conditions at  x = 0 to be imposed on these equations are 
obtained by likewise differentiating the conditions (38). 

The initial-value problem now consists of a set of simultaneous differential 
equations of order 84 subject to 84 conditions at  x = 0. We integrate this set of 
equations numerically as far as x = 1, there obtaining the corrections to the 
chosen values of E , C ,  p, y ,  TR and TI from (40). The whole process is then repeated 
with <(2) = fl(l)+ 86, etc., and so on until a satisfactory convergence has been 
achieved. 

Pilot calculations were performed using an IBM 1620 computer with 20K 
store. The amount of computation involved was however quite considerable and 
each characteristic value required one hour of computer time for its evaluation. 
Most of the subsequent results were obtained using the NIRNS Atlas computer 
where each characteristic value could be found in approximately 3 see. 

4. Numerical results 
(i) The viscous case 

Chandrasekhar (1961) has considered the overstability of viscous fluids and has 
concluded from his analysis that overstability is not possible for values of a 
greater than - 1. No consideration was given to values of a less than - 1 and it 
was pointed out by Chandrasekhar that it would be particularly worthwhile to 
explore the case a = - 2. 

Using the numerical method outlined in the last section, it has been possible 
to consider values of a less than - 1. Particular attention has been paid to the 
case a = - 2. Figures 1 and 2 contain graphs of TR and TI for a = - 2 and various 
values of E and 5. It will be observed that no real i7 exists (other than i7 = 0) for 
which TI = 0, so that overstability is not possible for a = - 2. 

Other values of a were considered in less detail. From this work, it was con- 
cluded that there was no likelihood of overstability down to a = - 3  at least. 
No values lower than - 3 were considered. 

(ii) The elastico-viscous case 

On account of the excessive computation involved in considering a series of 
values of a, it  was decided to confine attention to a = - 0.5 for illustration pur- 
poses. The results contained in part 2 were first checked using the numerical 
method outlined in Q 3. This involved setting 3 = 0 in equations (37 )  and (28). 
Over the range where the approximate method used in part 2 was assumed to be 
accurate, there was excellent agreement between the two methods. It was also 
confirmed (cf. part 2) that for a = - 0.5, k = 0 . 8 , 3  = 0, no real values of T exist 
(i.e. TI $. 0) for any value of 6 (see figure 3). In  part 2, this and other evidence 
was taken to indicate that the principle of exchange of stabilities does not hold 
for highly elastic liquids and overstability is possible. In the present paper, this 
conclusion is confirmed. 
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Figures 4 and 5 contain graphs of T, and TI against 5 for E = 3.0 and various 
values of k .  It will be observed that for sufficiently large k, there exists at  least 
one value of 77 (other than 77 = 0) for which TI is zero. When more than one such 
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FIGURE 1. Graphs of TR against 5 for various values of 6: a = -2.0, k = 0. 
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FIGURE 2.  Graphs of TI against 5 for various values of 8: a = -2.0, k = 0. 
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FIGURE 3. Graph of TI against B for a = -0.5, k = 0.8, 5 = 0. 
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FIGURE 4. Graphs of TR against a for various values of k :  a = -0.5, e = 3.0. 
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FIGURE 5. Graphs of Ti against for various values of k: a = - 0.5, E = 3.0. 
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FIGURE 6. Graphs of T: against E for various values of k: a = - 0.5. 
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value exists, the particular value of interest is the one associated with the lowest 
value of T,. This value of 3 will be denoted by a* and the corresponding value of 

Tn by 

0 
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k 

FIGURE 9. Graph of 8, against k :  a = -0.5. 
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FIGURE 10. Graph of Zc against k: tl. = - 0.5. 
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Figures 6 and 7 contain graphs of TT, and 5* against E for various values of k. 
The critical Taylor number (T,) at which the laminar flow pattern breaks down 
can be determined from figure 6 by calculating the minimum T$ for varying E .  

As in the case of the ‘stationary’ mode, the curves have a well-defined minimum 
and no difficulty is encountered in determining T, and the corresponding value of 
E ( E J .  The critical value of 5 (5,) can be obtained from figure 7 by reading off the 
value of 5 corresponding to 6,. 

Having referred to the procedure adopted in determining T,, E ,  and a,, it is now 
possible to summarize the major results of the present investigation by means of 
three figures. Figure 8 contains a graph of T, against k and figures 9 and 10 
contain the corresponding graphs for E,  and 5c. Also contained in figures 8 
and 9 are the ‘stationary’ mode curves computed in part 2. 

For values of k up to (approximately) k = 0.13, the only T,  which exists corre- 
sponds to a stationary stability mode. In  this region, the presence of elasticity 
in the liquid is a significant destablizing agent; the critical Taylor number falling 
from 2275 at k = 0 to 562 at k = 0.13. For higher values of k, a T, exists for both 
a stationary and an overstable mode. Since the critical Taylor number associated 
with the overstable mode is always lower than that associated with the stationary 
mode, it follows that overstability sets in at  Ic = 0.13 and is present for all higher 
values of k. The critical Taylor number associated with the overstable mode 
decreases steadily with increasing k and has reached 26.5 when k = 1.0, so that 
highly elastic Maxwell liquids can be very unstable indeed. 

The conclusions reached in this series of papers refer to a particular elastico- 
viscous model. However, the authors are of the opinion that consideration of 
other (more complicated) models is not likely to lead to results which are any 
less (or more) spectacular. It is therefore suggested that the next step must be 
an experimental programme designed to verify that elastico-viscous liquids can 
have stability characteristics which are grossly different from those for a 
Newtonian liquid. 

The authors are indebted to Dr R.H.Thomas for helpful comments and 
suggestions. 
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